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The solution for the cut structure is therefore [see Eq. (11a)]
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and [ree Eq. (12a)]
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The analysis of the cut structure as an original structure
would result in
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with identical displacements and internal loads,

Equations (11, 12, and 14) represents a relatively simple
procedure to obtain the structural behavior of a damaged
structure. The equations can be applied with or without
the assistance of digital computing machines and permit
the analyst to visualize how the loads and deformations will
change when the structure suffers a local failure, yielding, or
instabilitv. This can be very valuable in obtaining efficient
designs since the designer can readily grasp how the loads will
be redistributed when a local member is not adequate and
thereby obtain a better proportioned structure. In addition,
a more realistic ultimate strength capacity of the structure
based upon limit rather than elastic analysis can be utilized.

Determination of the Wake behind
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1. Introduction

VI‘HE properties of the laminar wake formed by a bluff
body in its steady motion through an incompressible
fluid at high Reynolds number are not completely understood
at present.  Most of the existing theories have been primarily
concerned with the two-dimensional case.l™* Although
we are interested in the axisymmetric case, it is worthwhile
to review the difficulties encountered in two dimensions.
The freestream solution due to Kirchhoff cannot describe
a (complete) two-dimensional wake since it vielates the in-
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tuitive result that the disturbance must die down at infinity
downstream.! Batchelor! proposed a model with circulation
in a finite wake. There are some experimental evidences®
that, for a two-dimensional wake, the drag coefficient ap-
proaches a finite limit as the Reynolds number Re approaches
infinity. Kirchhoff’s model predicts a finite drag coefficient
while Batchelor’s model on the contrary leads to a zero drag
coefficient as Re — «. Recenlly Roshko® and Sychyev#t
have developed, independently, similar theories giving both
a finite drag coefficient as Re — o and a finite wake for Re >
1. 'We shall see that the difficulty with Batchelor’s model in
two dimensions, which indeed makes it suspect, does not
arise in the axisymmetric case. Batchelor has proven® that
for a recirculating two-dimensional flow the vorticity £ is
constant in the cavity except possibly in thin boundary layers.
The circulation in the cavity is induced by contact with the
“outside,” which could be for instance a rotating container or
another flow (like in the case of a wake). If the outside tends
to make the flow rotate in only one direction, no ambiguity
arises about the response of the fluid in the cavity.t On the
contrary, for a two-dimensional wake the flows on each side
of the wake (the outside) tend to make the wake circulate
in opposite direction. Consequently, the response of the
wake 1s not obvious. Part of the wake may remain essen-
tially stagnant (the near wake of Roshko and Sychyev),
or the wake may be composed of two cells with circulation in
opposite directions. Each of the two cells then separately
obey Batchelor’s theorem ot constant vorticity (but with
opposite signs in each cell).

For an axisymmetric flow experimentali and numerical®
evidence indicates that no part of the fluid in the wake is
stagnant. A superficial look at Fig. 1 might still give the
impression that the outside flows on opposite sides of the
wake work at cross purposes, hence raising doubts once more
about the response of the fluid in the cavity. Actually the
two apparent cells in Fig. 1 belong to the same continuous
cell because of the axisymmetry of the flow. The vorticity
does not change sign but is in the same azimuthal direction
at each point. Then, if y is the distance from any point to
the axis, Batchelor’s theorem?® indicates that £/y is uniform
at each point in the wake (excepting thin boundary layers).
In conclusion for the axisymmetric case the outside pulls
consistently all around the wake and tends to make the fluid
circulate in ouly one possible way; hence, there is no doubt
that we have a completely circulating wake, obeying Batche-
lor’s theorem.?7

u}

Fig. 1 Sketch of wake and
streamlines.

T One has only to think about the fluid in a circular cylinder
rotating at uniform angular velocity. Once a steady state is
reached, the fluid rotates at the same angular velocity (uniform
vorticity).

1 For instance in the case of spherical cap bubbles,® the circu-
lation in the wake can be visualized very easily with small air
bubbles. For the related problem of water bells’ (the water
sheets are the outside) the circulation is clearly seen by injection
of smoke. In both cases the assumption that Batchelor’s
theorem for axisymmetric flow® holds in the whole cavity leads
to results®” well checked experimentally.
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2. Asymptotic Solution for the Axisymmetric Wake

We are interested in the limiting case of a very large
Reynolds number, Re > 1, so that viscous effects are neg-
ligible§ as a first approximation. We define the Reynolds
number by

Re = UD/v @

where U is the steady velocity of the bluff body, v the kine-
matic viscosity, and D the diameter of the body’s largest
cross section. We assume that the bluff body’s length is
either of order D (spherelike) or much smaller than D (disk-
like). The reasoning does not apply to very slender, needle-
like, bodies. It is quite intuitive that for increasing Re the
wake increases in size. If @ is a characteristic dimension of
the wake, we shall see later that D/a— 0 as Re— ». Conse-
quently, we commit only a negligible error if, in the first
approximation, we disregard the body entirely for the deter-
mination of the streamlines. This approximation is obvi-
ously incorrect near the body. The details of the flow have
to be determined near the body to compute the drag F. One
can say that the role of the body is primarily to provide the
energy F U necessary to maintain the flow against the viscous
dissipation ®, with

FU =% 2

Except near the body, the flow can be determined easily
using Batchelor’s theorem. The same equations have been
solved before in a different case.® It is found, calling ¥ the
stream function and using spherical polar coordinates (see
Fig. 1),

¥ = 3Ur?sin?0(r? — a?)/4 3)
inside the wake
Y = 2072 sin?0(l — a®/r%) 4)

outside the wake

The stream functions are written for a motionless body,
the fluid having the velocity U at infinity, rather than for a
body moving in a fluid at rest. The equations indicate that
for Re > 1 the wake is a sphere of radius a. The velocity
U being given, the flow is entirely determined (except near
the body) once « is known. The viscous dissipation is®

® = 30 mrapU? (5)

where p is the density. If we can evaluate I, then Eq. (2)
provides the additional equation necessary to compute a.
Clearly, the value of F depends on the exact shape of the
body. For instance, consider the case of a thin disk (Fig. 1).
Since D/a « 1, 1t 1s quite intuitive that the pressure p acting
on the disk can be determined from the potential flow over
the sphere of radius a [Eq. (4)]. On the other hand, the back
pressure below the disk should be fairly uniform since it is a
stagnation region where the flow changes direction drastically
(at the difference of the outside where the flow is much
smoother). Actually, this rather simplistic argument is
checked very well from numerical computations for Reynolds
numbers as low as 300 (see Ref. 8, Fig. 12). Over the disk
then (since the viscous stress is negligible for Re > 1),

dp = pu du (6)
where, from (4),
u =~ 300 (7)
§ We must remember of course that, even for Re >> 1, viscosity
is of fundamental importance in the problem as it is responsible

for the diffusion of vorticity and the validity of Batchelor’s
theorem.
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po being the back pressure, we obtain
F-{. P ama(py — p)ao )
where, from (6) and (7), ‘
p — po = 9U*[0* — D*/4a?]/8 &)
Consequently,
F = 97U?%D*/2%? (10}
and, from (2) and (5),
D/2a = (320/3 Re)'/3 (11)

Equation (11) gives @ and completes the determination of
the flow. Notice that indeed D/2a — 0 as Re — «, but the
limit is reached very slowly because of the 3 power and also
because of the relatively large coefficient. The drag coeffi-
cient is defined by Cp = 8F/pU?rD? or

Cp = 2(45/Re)?/s (12)

As expected Cp — 0 as Re — .

3. Conclusion

A very large Reynolds number is necessary for the theory
to be valid. This introduces experimental difficulties since
the flow may become unstable and turbulent. Fortunately,
numerical solutions can be obtained which are constrained
to give a steady laminar flow no matter how large the Reyn-
olds number is.® Tt is interesting to compare some of the
results. For instance, from Fig. 5 of Ref. 8, it is clear that
for Re = 600 the wake is already spherical. Also, for Re =
600, Eq. (11) gives 2a/D = 1.8 (this is not very large since
Re is only moderately high), which is almost exactly the
value one obtains from Fig. 5.3

Clearly, if the body is not a disk (and not needlelike) the
wake remains spherical and the dependence of a and Cp on
the Reynolds numbers remains unchanged (even if the exact
numerical coefficients will depend on the exact shape of the
body). Consequently, for a reasonable axisymmetric bluff
body and a steady laminar flow we have

D/2a ~ Re™3, Cp ~ Re™?%3 (13)

Finally, notice that the tangential viscous stresses deduced
from (3) and (4) are not continuous at the sphere. Conse-
quently, stress-induced boundary layers develop along the
sphere. Determination of these boundary layers leads to
small corrections (or order Re~V2) in our previous results.
The same technique which has been used previously® for
drops could be applied here.
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Estimation of Aerodynamic Center and
Span Load Distributions of Swept Wings
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Nomenclature

a ora, = localsectional lift curve slope

AR = aspect ratio

b = wing span

bun = coefficient defined by Eq. (17) of Ref. (9)

¢orc, = local wing chord, bar denotes average chord

A = Mach number

m = total number of spanwise control stations

n = exponent defined by Eq. (6)

[ = exponent defined by Eq. (5)

R = Reynolds number based on mean aerodynamic chord

Tao = aerodynamic center position measured from wing
leading edge

ye.ory; = spanwise coordinate measured relative to wing center
or tip, respectively, in terms of local chord

aora, = local geometric angle of attack

% = nondimensional circulation

n = nondimensional spanwise coordinate

A = taper ratio

A = parameter defined by Eqgs. (1) and (2)

v = index denoting spanwise location

Lo = semichord sweep angle

Lo = effective semichord sweep angle

w = downwash factor of wing

Introduction

HERE exist several methods for calculating the acro-

dynamic center distributions on swept wings. It is the
purpose of this Note to indicate the most appropriate method,
or methods, applicable to swept, moderate aspect ratio wings.
Reference 1 presents a method which is given in two forms for
determining the aerodynamic center distribution with respect
to the quarterchord line of a wing. One form is the tangent
approximation and the other form is the hyperbolic approxi-
mation. Reference 2 presents a method, based on the Mul-
thopp hifting surface theory of Ref. 3, which includes a cor-
rection for wing thickness.

Discussion

The hyperbolic and tangent approximations are given in
Ref. 1, as respectively.

te . 27 1/2 Ll @,
My) = [1 + (27T ang. y/> ] gy B,y
©e ©e
and
Ny) = 1.40 + 1.33y — (0.16 + 7.30y) V2 @)

The constants in the Iiq. (2) were determined such that the
spanwise aerodynamic center position is tangent to the ¢/4-
line [Le.. A(y) = 0] for y equal to unity.
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Both experimental and theoretical aerodynamic center loca-
tions are shown in Figs. 1a, 1b, le, and 1d for the wings of
Refs. 4, 5, 6, and 7, respectively. These wings are labeled as
planforms A, B, C, and D in the subsequent discussion.
The geometrical characteristics of the wings are tabulated
as follows:

Table 1 Geometrical characteristics of wings

¢ /4, Airfoil
Wing AR deg N section t/e, 9

A 2.828 49.51 0.333 RAE 102 6

B 3.0 45.0 0.5 NACA 10
64A010

C 5.0 45.0 1.0 RAE 101 12

D 8.0 45.0 0.45 NACA 12
63A012

The Multhopp lifting surface theory result obtained for each
wing, from a computer program based on Ref. 8, is also in-
cluded for comparison. The number of control points used
in the computer program was 4 chordwise and 31 spanwise
(tip to tip). The experimental data shown in Fig. 1 are de-
termined from an average of the experimental values between
the angles of attack of 2° and 5°. Examination of Fig. 1
shows that the tangent approximation of Ref. 1 gives a good
representation of the aerodynamic center location for all
wings except the high aspect ratio wing D. In this case,
either the Multhopp lifting surface theory® or Transonic Data
Memorandum method,? without the thickness correction,
gives good agreement with experiment. It appears from the
experimental results shown in Figs. 1a, 1b, and 1d that the
aerodynamic center positions do in fact follow the predicted
variation in moving toward the trailing edge at the wing root
and toward the leading edge at the tip. Also shown in Fig.
Ic is the extended tangent, as recommended in Ref. 2, for
representing the aerodynamic center distribution on the
outboard portion of the wing.

One question of immediate interest is the significance of
the aerodynamic center position on the loading of swept
wings using the method suggested by Kuchemann.! This
method determines the two-dimensional sectional lift curve
slope for swept or unswept wings and then caleulates the span
loading using a quasi-lifting line analysis.  The sectional lift
slope is given in Ref. 1 as

- COS@, 2n .
= sinthg 1 — mnlcotrn — cotmng) @)
Pe = (100/2/[]— + (a() C‘OS‘:9(:/‘1/71'11)2]1/'1 (4)
no = 3|1 — (¢/7/2)] (5)

and

mom 1 o1 M (e//2)
201 + (ag cosg,)/mA)2] /AL Hieel/ (/2]

(6)

The term A(y) is related to the acrodynamic center location
by the expression
MNy) = 27 (xe. — 0.25)/ 00 )

The integral equation for the spanwise loading is given as

LI _w frody(e) dn’
almyeln) y(n) = a(n) o f_]‘ R ——

3)
This equation can be solved by the Multhopp integration
method? which results in the system of linear equations

2b

W,

Yy <bvv + ) = ACE": -+ Z’ bV?L’Yﬂ (9)
w n=1



